
tutorials

Getting started with XC. Axial force in a bar
subjected to a uniform temperature increase.

This tutorial deals with a steel bar of uniform cross section whose ends are
fixed from translational motion. The Young’s modulus of steel is E = 210 GPa
and its coefficient of thermal expansion α = 1.2e−5◦C−1. The area and length
of the bar are assumed to be L = 1 m and A = 4e−4 m2, respectively. The goal
is to find the axial force in the bar subjected to a uniform temperature increase
of ∆T = 10◦C−1.

Import modules. Firstly, we execute some import statements, so that the
code in our script gains access to the code in the imported modules.� �

1 import xc_base

2 import geom

3 import xc

4 from model import predefined_spaces

5 from materials import typical_materials

6 from solution import predefined_solutions� �
Listing 1: Imported modules.

The first lines correspond with three main modules of XC :

• xc_base: includes the basic functions for the Python interface: assign and
retrieve properties stored in the C++ classes (see example test_evalPy.py)
and execute Python scripts (see example test_execPy.py).

• geom: handles entities related to geometry, like points, lines, polylines,
planes, polygons, circles, coordinate systems, grids, vectors, matrices, ro-
tations, translations, . . .

• xc: this module provides access to the finite element classes and functions:
mesh generation, element type and material definition, analysis, . . .

Import statements in lines 4-7 have to do with the following modules:

• predefined_spaces: this module is intended to set the dimension of the
space and the number of nodal DOF, as well as to introduce constraints
to them.

• typical_materials: several often-used materials are predefined in this
module: elastic uniaxial with or without tension branch, prestressed cable,
concrete, steel, . . .

• predefined_solutions: provides access to several solution procedures for
which a set of properties have been predefined. Among these properties
are: the solution algorithm (linear, Newton Raphson, Broyden, . . .), the
integrator, the DOF numberer, the convergence tolerance, the maximum
number of iterations,

Some of the predefined solvers are: simple static linear, plain linear New-
mark, simple Lagrange static linear, simple transformation static linear,
simple Newton-Raphson and modified Newton-Raphson, penalty Newton-
Raphson, penalty Newmark Newton-Rapshon and frequency analysis.

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 1

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

tutorials

Definition of parameters. XC allows full parametric models, that’s to say,
the definition of geometry, material, loads, . . . , can be based on properties that,
if your data change, the problem is recalculated accordingly.

Lines 7 to 11 set the value of the parameters which will be used later during
the model generation.� �

7 L= 1.0 # Bar length (m)
8 E= 210e9 # Elastic modulus (Pa)
9 alpha= 1.2e-5 # Thermal expansion coefficient of the steel

10 A= 4e-4 # bar area expressed in square meters
11 AT= 10 # Temperature increment (Celsius degrees)� �

Listing 2: Parameters.

Finite element problem. The type of problem defined is SolidMechanics2D
(line 15), that’s to say, nodes are defined by two coordinates (x,y) and has two
degrees of freedom (ux, uy). This function takes as argument the handler of
nodes, that is retrived from preprocessor in line 14.� �

12 feProblem= xc.FEProblem ()

13 preprocessor= feProblem.getPreprocessor

14 nodes= preprocessor.getNodeHandler

15 modelSpace= predefined_spaces.SolidMechanics2D(nodes)� �
Listing 3: FE problem type.

Definition of nodes. Sentences in lines 16-17 place a node, defined by its
coordinates (x,y), in each extremity of the bar.� �

16 nod1= nodes.newNodeXY (0.0 ,0.0)

17 nod2= nodes.newNodeXY(L,0.0)� �
Listing 4: Nodes.

Definition of material The material defined in line 18 is an elastic uniaxial
material. The method takes as parameters the preprocessor object, a name that
we’ll use to assign this material to the elements, and its Young’s modulus.� �

18 elast= typical_materials.defElasticMaterial(preprocessor , "

elast",E)� �
Listing 5: Materials.

→ Find out more about materials in XC

Definition of elements. The only element in the model is created and added
to the element handler (line 23). Prior to that, the material, element di-
mension and the tag to start element numbering are set through attributes
of the element handler. We use one of the available methods to create ele-
ments, that takes as arguments a name pointing to the type of element and
the tags of the nodes linked. The library of elements include types: truss ,

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 2

https://lcpt.github.io/XCmanual/preprocessor/material.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

tutorials

truss section , corot truss , corot truss section , muelle , spring , beam2d 02
, beam2d 03 , beam2d 04 , beam3d 01 , beam3d 02 , elastic beam2d , elas-
tic beam3d , beam with hinges 2d , beam with hinges 3d , nl beam column 2d ,
nl beam column 3d , force beam column 2d , force beam column 3d , shell mitc4
, shell nl , quad4n , tri31 , brick , zero length , zero length contact 2d ,
zero length contact 3d , zero length section.� �

19 elements= preprocessor.getElementHandler

20 elements.defaultMaterial= "elast"

21 elements.dimElem= 2 # Dimension of element space
22 elements.defaultTag= 1 #Tag for the next element.
23 truss= elements.newElement("Truss",xc.ID([nod1.tag ,nod2.tag]))

;

24 truss.area= A� �
Listing 6: Elements.

→ Find out more about element types in XC

Definition of constraints. Lines 25 to 29 introduce single-point boundary
constrainsts in both nodes restraining their two degrees of freedom, adding these
components of the model to the constraint handler. The method employed takes
as arguments: the tag of the node, the degree of freedom to be limited, and the
value assigned to that DOF.� �

25 constraints= preprocessor.getBoundaryCondHandler

26 spc1= constraints.newSPConstraint(nod1.tag ,0 ,0.0)

27 spc2= constraints.newSPConstraint(nod1.tag ,1 ,0.0)

28 spc3= constraints.newSPConstraint(nod2.tag ,0 ,0.0)

29 spc4= constraints.newSPConstraint(nod2.tag ,1 ,0.0)� �
Listing 7: Constraints.

→ Find out more about boundary conditions in XC

Definition of loads. First, the handlers of loads and load patterns are suc-
cessively called (lines 30-31). Then, we specify a linear time serie as default
and create a new load pattern, giving as arguments its type and an arbitrary
name. The effect of the temperature increase is introduced in the element as an
imposed deformation and added to the load pattern.� �

30 loadHandler= preprocessor.getLoadHandler

31 lPatterns= loadHandler.getLoadPatterns

32 ts= lPatterns.newTimeSeries("linear_ts","ts")

33 lPatterns.currentTimeSeries= "ts"

34 lp0= lPatterns.newLoadPattern("default","0")

35 eleLoad= lp0.newElementalLoad("truss_temp_load")

36 eleLoad.elementTags= xc.ID([1])

37 eleLoad.eps1= alpha*AT

38 eleLoad.eps2= alpha*AT

39 lPatterns.addToDomain("0")� �
Listing 8: Loads.

→ Find out more about loads and load patterns in XC

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 3

https://lcpt.github.io/XCmanual/preprocessor/cpp_classes/domain/elem_types.html
https://lcpt.github.io/XCmanual/preprocessor/boundary_conditions.html
https://lcpt.github.io/XCmanual/preprocessor/actions.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

tutorials

Obtaining solution. The solution is obtained by using the algorithm that
performs a linear static analysis.� �

40 analisis= predefined_solutions.simple_static_linear(feProblem)

41 result= analisis.analyze (1)� �
Listing 9: Solver.

→ Find out more about analysis in XC

Review of results. Finally, we ask the element its axial internal force.� �
42 elem1= elements.getElement (1)

43 elem1.getResistingForce ()

44 N= elem1.getN()

45 print ’N= ’, N� �
Listing 10: Results.

The result must be:

N = −E ×A× α×∆T = −10.080 N(compression)

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 4

https://lcpt.github.io/XCmanual/solution/cpp_classes/analysis.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

